
DRAFT - June 17, 2020

CPU, Esq.
How Lawyers and Coders Do Things with Words

James Grimmelmann
Professor of Law, Cornell Tech and Cornell Law School

Brief Summary
Should law be more like software? Some scholars say yes, others say no. But what if
the two are more alike than we realize?

Lawyers write statutes and contracts. Programmers write software. Both of them
use words to do things in the world. The difference is that lawyers use natural
language with all its nuances and ambiguities, while programmers use
programming languages, which promise the rigor of mathematics. Could legal
interpretation be more objective and precise if it were more like software
interpretation, or would it give up something essential in the attempt?

CPU, Esq. explodes the idea that law can solve its problems by turning into software.
It uses ideas from the philosophy of language to show that software and law are
already more alike than they seem, because software also rests on social
foundations. Behind the apparent exactitude of 1s and 0s, programmers and users
are constantly debating the meanings of programs, just as lawyers and judges are
constantly debating the meanings of legal texts. Law can learn from software, and
software can learn from law. But law cannot become what it thinks software is --
because not even software actually works that way.

Summary
There is a close parallel between legal texts and computer programs. Both lawyers
and programmers work with words that weave the world. But while the natural
languages in which lawyers work are messy and ambiguous, the programming
languages in which programmers work are precise and unambiguous. Since
ambiguity, vagueness, and unconstrained discretion are the bugbears of legal
interpretation, software offers an appealing alternative. Or so it seems.

Previous scholarship has explored the relationship between law and computer
science by focusing on what software does and on how it decides. Scholars working in

1

DRAFT - June 17, 2020

the architecturalist tradition of Lawrence Lessig and Jonathan Zittrain have written
about software as an alternative “modality of regulation” to law: it prevents
unwanted behavior rather than punishing it after the fact. And more recently, a
burgeoning scholarly community associated with the ACM FAT* (Fairness,
Accountability, and Transparency) conference has delved deeply into the biases
and pitfalls of algorithmic decision-making as compared with human decision-
making on which legal systems have traditionally relied.

This book’s focus will be different: it will ask what software means. Starting
from the observation that adopting a legal text and running a computer program
are both authoritative speech acts, CPU, Esq. will analyze how lawyers and
programmers extract meaning from the texts they work with. It will use concepts
from the philosophy of language to understand software, then turn the analogy
around, using software to understand law.

It turns out that software provides an imperfect ideal for law, not because it is
different and worse, but because it is much the same. Many of the same factors that
make legal interpretation indeterminate and contentious are also at work with
software. Programming languages are no less dependent on consensus and
convention than natural languages; it is just that the social processes that establish
shared meaning are a little subtler. While some of the approaches that
technologists have devised are interesting and worth emulating, software cannot
resolve the fundamental tensions inherent in legal language. Nothing can.

The book will make three principal contributions: to the philosophy of
computer science, to legal doctrine, and to the philosophy of law.

 Part I will advance the philosophy of computer science. A speech-act-based
analysis borrowed from the philosophy of law provides a fresh perspective on the
relationship between programmers, programs, and computers. The first four
chapters will give a philosophical analysis of syntax and semantics in four types of
language: the natural language that people use in everyday life (chapter 1), the legal
language of statutes and other legal texts (chapter 2), the formal languages of
mathematics and logic (chapter 3), and programming languages (chapter 4). Three
further chapters will flesh out the analysis of programs by looking at their different
interpreters: programmers (chapter 5), computers (chapter 6), and users (chapter
7).

Part II will clarify doctrinal debates in cases involving software. When
programmers do things with software, the legal system needs to understand just
what it is they are doing. Five chapters will consider how legal interpreters ought to
approach software in settings where it has legal consequences. These questions
arise in an interestingly diverse range of contexts, including the First Amendment

2

DRAFT - June 17, 2020

(chapter 8), copyright (chapter 9), patent (chapter 10), unauthorized access
(chapter 11), and smart contracts (chapter 12).

Part III will turn to the big question for the philosophy of law: whether legal
texts could and should be more like software. The first two chapters will deal with
legal interpretation; whether computers could and should imitate human legal
interpreters (chapter 13) and vice-versa (chapter 14). The second two chapters will
deal with legal drafting, first substance — whether legal texts should be rewritten in
formal languages (chapter 15) — and then process — whether legal drafting should
be more like software development (chapter 16).

Detailed Outline

Part I: Foundations
Lawyers and programmers are modern wizards. A lawyer who puts the right words
on paper under the right conditions summons a company into existence, or binds
people to act in the future. A programmer who puts the right words into a computer
under the right conditions builds a virtual castle, or makes a real airplane fly. These
two professions weave the world with words. The question is how.

This part systematically compares and contrasts legal language and
programming languages. To do so, it also considers two other types of language:
natural language (of which legal language is an important subset) and formal logical
languages (to which programming languages are closely related). The discussion of
programming languages is the longest and most detailed, since it is the one least
familiar to the legal-academic community.

Chapter 1: Natural Language
This chapter surveys standard concepts in the philosophy of language. It has two
goals. The first is to bring out the basics of speech act theory, which explains how
people “do things with words.” The second is to survey the major theories of
interpretation to identify different possible sources of meaning, including the
speaker, the hearer, the relevant linguistic community, and the context of utterance.
The distinction between speaker meaning (what a speaker intended to communicate)
and sentence meaning (what an expression means standing on its own), provides a
jumping-off point for later chapters.

3

DRAFT - June 17, 2020

Chapter 2: Legal Language
This chapter presents standard accounts of how legal language modifies the usual
philosophical picture. The first major difference is that legal speech acts are
conventional rather than purely communicative. They succeed only when they are
made by speakers who possess the authority to make them and are made in the
proper form. The second is that once they are successfully made, they have
authoritative force: legal rights and obligations have an institutional existence in
the world that goes beyond a hearer’s recognition of the speaker’s intent. These
differences considerably complicate the nature of legal speech acts, so part of the
chapter is devoted to unpacking the different kinds of things that different kinds of
legal texts (statutes, contracts, wills, etc.) can do. It then considers some of the
theoretical debates over the proper interpretive standards to use for legal texts. It
pays particular attention to textualism — the view that interpretation should focus
on understanding the sentence meaning of the text in question (rather than the
intent of its author).

Chapter 3: Formal Languages
The development of a rigorous and mathematical concept of formal language was
one of the major philosophical achievements of the century from 1850 to 1950, and
it provided an essential conceptual foundation for the development of modern
programming languages. In addition to presenting a standard modern account of
the syntax and semantics of formal languages, the chapter briefly considers how
some of these ideas have made their way back into the analysis of natural
languages: natural-language processing systems rely on formal representations of
syntax, and linguistics has borrowed fruitfully from logical semantics (albeit not
with the same austere rigor). The chapter finishes by arguing that there that will
always be a gap between the mathematical core of a formal system and the real-
world uses that people can make of it. Similar gaps will appear in several ways in
the discussion of programming languages.

Chapter 4: Programming Languages
This chapter is the first of four on software. It aims to give the reader an
understanding of how programming languages work that is both intuitive and
rigorous. It gives an extended example of a toy programming language and a few
simple programs — first in a naive and intuitive way, and then again in a more
precise way that builds on the formal approaches discussed in the previous chapter.

4

DRAFT - June 17, 2020

The first major point of the chapter is to bring out the idea that any program
can be given a naive program meaning by running it and observing what the
computer actually does. I call it “naive” because the concept is deficient in several
ways — e.g., the computer might malfunction — and later chapters will provide the
necessary corrections.

The second major point of the chapter is to characterize running a program as
a speech act. The analysis here closely parallels the speech-act analysis in Chapter
2, but it also requires a digression to address the philosophical objection that a
computer cannot “understand” software as speech. As soon as we understand a
programmer as a speaker, the sentence meaning/speaker meaning distinction
immediately shows that the programmer may intend something by the program
other than what it actually does. This leads to the concept of naive programmer
meaning — again, it is “naive” because it will require refinement.

An important running theme in this chapter and the next three is that
technical systems are also social. A programming language, for example, has
mathematically unambiguous semantics only to the extent that a community of
programmers agree on the standard which defines those semantics.

Chapter 5: Programmers
Chapter 4 looked at what it means to run a program. Chapter 5 turns its attention to
the programmers who write them. First, it sharpens up the concept of programmer
meaning by looking closely at the debugging process. A better version of
programmer meaning is what a program would do if it were correctly specified and bug-
free. This concept depends on the working knowledge of a community of
programmers, but it is also one that programmers intuitively apply on a daily basis.
One programmer reading another’s code can form a shared understanding of what
the program should do well enough to debug it. This part of the chapter pays
particular attention to formal verification —basically, the application of logical
methods to try to bring program and intention into closer correspondence. As
Chapter 3 foreshadowed, there is fundamental limit to program verification: a
program can be proven correct according to a specification, but the specification
need not match what the programer wants, or the real world.

The chapter then considers ways in which a program can carry incidental
meaning to other programmers who read it rather than execute it. Some of this is
derivative of program and programmer meaning (a reader may correctly
understand what what the program will do or was intended to do), but some of it is
independent of the program’s function (source code comments can contain any text
at all). The familiar distinction between source code and object code turns out to be

5

DRAFT - June 17, 2020

social rather than technical: source code is distinguished precisely by its ability to
convey meaning to other programmers. This section also provides a tour of
amusing code examples that show the wide variety of ways people can
communicate with source code, including ASCII art and jokes in comments.

Chapter 6: Hardware
Chapter 5 went up from a program to the programmer. This chapter goes down
from a program to the computer. It starts by working through the basic distinction
between type and token: a given program can be encoded in many different
possible physical instantiations.

The chapter works in detail through two issues, which closely parallel the
discussion in chapter 5. First, just as the source code/object code distinction
collapsed technically but was pragmatically useful, the hardware/software
distinction is technically ill-founded but meaningfully captures a difference in how
programmers work with computer systems. Hardware is what is fixed in a given
context; software is what is mutable. Second, just as software can be formally
verified, so can hardware. The reasons are a little different but the conclusion is the
same: formal methods can greatly improve hardware quality, but perfection is
impossible because abstract reasoning can never completely model the behavior of
a physical system.

Then, just as Chapter 5 refined the idea of programmer meaning, this chapter
refines the idea of program meaning. A more useful concept of program meaning
takes as its model of computation not an actual physical piece of hardware, but an
abstract model of the “hardware” on which a program runs. This model must be
settled by social convention, but once it is, it provides a fixed context for
interpreting programs. Thus, a better definition of functional meaning is as what a
program would do if executed on ideal hardware that never malfunctions.

Chapter 7: Users
Programmers and computers do not exhaust the audiences for programs’ meaning.
Users also experience programs, and this chapter describes how.

Most importantly, when a program runs, part of its program meaning may be
to cause a further communicative act to take place, one for which a user is the
audience. This pattern is important enough that it requires a concept of user
meaning to capture. Part of the chapter is a survey of some of the complex ways in
which user meaning can be expressed. For one thing, the program/data distinction
collapses: from a certain point of view, a .docx file is a program that can be run on
the Microsoft Word virtual machine to produce user meaning through text. For

6

DRAFT - June 17, 2020

another, programs can be interactive, so an account of how they produce meaning
needs to go beyond single utterances. This section draws on work in human-
computer interaction (HCI) and game studies to illustrate some of the richness of
software-mediated aesthetics.

The chapter also draws on HCI to make the point that users are typically not
programmers and do not want to be. Modern computing interfaces walk a difficult
tightrope between giving users clear and predictable controls, and doing what the
users intuitively want. Both goals are important, but it can be hard to satisfy both at
once. For example, the rise of verbal interfaces to software assistants like Siri and
Alexa shows how one major task of modern interaction designers is to hide the
immense underlying complexity of the systems they let users control: the creators
of these interfaces have reasoned that it is better to be vague and ad hoc than to
force users to express themselves precisely in a formal language.

Part II: Legal Doctrine
This part applies the concepts from Part I to concrete examples. Each chapter
describes how a different body of substantive law asks legal interpreters to
understand the legal effects of software. The running theme of this part is that the
answer to “What does this program mean?” depends on why the question is being
asked. Different legal contexts call for different interpretive approaches.

Chapter 8: Code as Speech
Is software protected by the First Amendment? The courts which have held that it is
have accepted arguments grounded in incidental meaning — software is a medium
for people to communicate ideas to other people. But one frequently sees stronger
arguments for categorical protection which are grounded in program meaning, and
which take the idea of software as “speech” to computers literally. Speech-act
analysis, however, shows why the former argument is persuasive and the latter is
not: program meaning is not the sort of communication covered by the First
Amendment. Instead, software is and should be covered to the extent that it
conveys user, programmer, or incidental meaning. These are different vectors, and
disentangling them clarifies the different social roles played by software.

Chapter 9: Software Copyright
When is a program copyrightable? The canonical doctrinal answer is, “When it
contains sufficient creative expression that does not merge with the idea of the
software’s function.” On the one hand, this expression can come from incidental

7

DRAFT - June 17, 2020

meaning: source code comments, variable naming, and other decisions that are
incidental to the code’s program meaning. On the other, it can come from user
meaning: an MP3 has the “function” of playing music, but that music may be
copyrightable. Neither program nor programmer meaning, however, is a proper
subject of copyright. (Note that this is a different answer than in the previous
chapter: programmer meaning can support First Amendment protection but not
copyright.)

Chapter 10: Software Patent
When is software patentable? Software patents are a difficult case because patent
law rests on an invention-vs.-embodiment distinction that collapses when a
description of the invention is also a functional artifact that can practice it. Per se
arguments against software patents rest on treating the software/hardware division
as a natural fact, which it is not. But the consequences of treating all software as
patent-eligible may be bad enough that the line is pragmatically justified, even if it
is not philosophically rigorous. To the extent that software is patentable, it is
primarily program meaning that matters: doctrines such as utility and
indefiniteness systematically exclude programmer and incidental meaning from
protection. The chapter also includes a short discussion of design patent, which is
focused on user meaning but also wrestles with the software/hardware division.

Chapter 11: Unauthorized Access
Computer-misuse laws, which prohibit “access” to a computer without
“authorization.” Frequently, whether use was authorized or unauthorized turns on
the code itself: did it allow or disallow what the user did, or should the user have
understood that what they were doing was allowed or disallowed in light of what the
computer did? The problem can be understood as one of choosing between
program, programmer, and user meaning and of specifying the context in which
users are expected to ascertain that meaning. This may seem like a silly distinction:
why would anything other than user meaning matter to users? But many misuse
cases (and related cases such as ones involving gambling machines) involve
software bugs, which allow the user to do something not intended by the
computer’s owner. To the extent that the user is expected to have understood that a
particular use was forbidden on the basis of interacting with the software,
unauthorized-access law effectively states that programmer meaning trumps
program meaning.

8

DRAFT - June 17, 2020

Chapter 12: Smart Contracts
In a “smart contract” (which may or may not be a legal contract) the parties agree to
have some of their obligations determined by the output of a program. The same
general approaches as in the previous chapter are available, but the details are
more complicated. First, whereas authorization to use a computer is unilateral,
more parties are typically involved in setting up a smart contract, which makes
programmer meaning more difficult to define. Second, the interface between legal
contract and smart contract is richer: a legal contract can “wrap” a smart contract
and specify interpretive rules, and a smart contract can (intentionally or
inadvertently) trigger a legal contract as well. This means that the parties
themselves may have attempted to specify the interpretive rules to be used, which
raises difficult questions of the extent to which their requests should be respected.

Part III: Legal Theory
This part turns to the bigger questions: should law be more like software? In some
places, the answer is “yes”: programmers have a great deal of wisdom in
preventing, detecting, and fixing bugs, from which lawyers could learn. In others,
the answer is “no”: the vision of software as objective, unambiguous, and apolitical
rests on serious misconceptions of how software works in the real world. What
looks like natural, mathematical perfection is actually the result of complex and
contentious social processes — not unlike the rule of law.

Chapter 13: Artificial Intelligence
This chapter considers the stunning recent rise of big data, machine learning, and
black-box artificial intelligence techniques. It argues that replacing human
interpreters with computer programs is possible in theory but deeply inadvisable
in the near term — and for the same reason. A close look at the arguments for and
against using AIs to make legal decisions shows that the most persuasive such
arguments turn not on the technical question of the formal correctness of the AI
algorithms but on the social question of whether they can articulate their decisions
in terms that are comprehensible to and acceptable to the relevant human
community. Finally, the chapter includes discussion of corpus linguistics and other
statistical and machine-learning techniques as applied to interpretation: they are
obviously problematic, but in ways that any interpretive method is problematic.

9

DRAFT - June 17, 2020

Chapter 14: Legal Interpretation
The computer as interpreter provides a powerful foil for theories of legal
interpretation. This chapter reconsiders the debates over textualism from Chapter
2. One way of thinking about the debates over textualism is as a choice of
interpreters: are judges more like computers who are expected to carry out
legislative directions predictably and precisely, or are they more like other
programmers who are expected to find and fix bugs in legislative directions? Another
related way of framing the question is as a choice between natural and formal
language: to what extent are legal texts communicative, so that they take their
meanings from linguistic usage, and to what extent are they conventional, so that
they take their meanings from stipulated rules of usage?

A close look at program interpretation offers lessons on both sides. On the one
hand, program meaning shows that nearly discretionless and nearly contextless
interpretation is possible. Formal languages interpreted according to precisely
specified semantics are in fact incredibly common in the world. On the other hand,
programmer meaning shows that programmers frequently regard program
meaning as the wrong answer. Sometimes a program is simply buggy. There are no
definitive answers for law, because ultimately the choice of interpretive method is a
question of positive law and the arguments for different methods are primarily
normative. But a comparison with the world of programming clears away some of
the underbrush of overbroad categorical arguments.

Chapter 15: Programming Law
Is the ideal law a computer program? The book’s argument that a program’s
meaning is the result of conventions adopted by people puts this question in a new
light. To commit legal decisions to software is not to remove them from the social
and political realm of human decision-making. It is simply to mediate the social
and political decisions in a different way.

More specifically, the chapter considers two overlapping ways that laws
themselves — and not merely their interpretation — might be made more like
software. The first is to rewrite statutes and regulations in a programming
language, so that their meaning becomes unambiguous and their interpretation
could be committed to computers. This idea closely resembles the way in which
smart contracts commit interpretation and enforcement to computers, so the
discussion here picks up where Chapter 12 left off. Many of the same problems
immediately arise. Phrasing law’s rules in a formal language of software and
committing their interpretation to computers enables greater precision of

10

DRAFT - June 17, 2020

expression in some respects, but deeply impoverishes it in others. One crucial
distinction is that statutes are unilateral and binding, which raises greater concern
about fair notice — particularly when the statutes themselves contain the kinds of
bugs to which software is prone.

Second, the chapter considers the possibility that — whether or not statutes
themselves are expressed in natural or formal language — they might someday be
drafted by AIs, perhaps even modifying parties’ legal obligations in real time. Here,
the analysis continues the discussion of AI interpreters in Chapter 13. Such
systems ought to be judged by what they do and how they publicly justify it, rather
than by how they work.

Chapter 16. Legal Drafting
This chapter compares and contrasts how lawyers draft legal documents and how
programmers write software. It considers first the textual and structural aspects of
drafting/coding: definitions, cross-references, modularity, etc. Then it turns to the
processes programmers use, including agile methods, pair programming, and
testing. It finishes the survey by looking at the toolchains lawyers and
programmers use: editing software, version control, etc. It then bemoans the
comparative lack of sophistication of almost everything in the legal drafting
process: programmers have much better tools and use them far more effective. It
discusses ways in which legal drafting is due for a revolution, with particular
emphasis on what better testing methods could achieve.

Audience
This will be an academic book, but not exclusively a legal academic book. It will
directly engage with the scholarly literature in technology law, philosophy of law,
philosophy of language, and philosophy of computer science. I hope that it will be of
interest to scholars working in law, computer science, philosophy, linguistics, STS,
communications, and information science. I will assume no particular background
in any of these fields, and will explain all necessary concepts from first principles.
In particular, I will explain the relevant computer technology and the practices of
programmers in careful detail. I would like for this book to be a canonical reference
relied on by legal scholars when they give their own accounts of programming and
software. The book should be appropriate for seminars in technology law, legal
theory, and philosophy.

11

DRAFT - June 17, 2020

Manuscript
I expect the sixteen substantive chapters to average approximately 7,500 words. I
anticipate about 5,000 words of introduction and conclusion, for a total of about
125,000 words. The manuscript will include endnotes formatted according to the
authoritative legal-academic style guides, the Blue and Indigo Books.

Related Scholarship
There are no books, academic or popular, on the linguistic parallels between legal
texts and software. There is, however, a substantial literature on each pair in this
triplet: language and law, law and software, software and language. A major task of
this book is to juxtapose these three lines of scholarship and bring out some of their
related insights.

There are two bodies of scholarship on law and computer science that I see as
models for CPU, Esq.. Neither of them deals with the linguistic connection that this
book will explore, but both of them strike me as good examples of what legal theory
can bring to this space. A third contains some interesting work but approaches the
issues from such a different perspective that there is not much overlap.

One is the architecturalist tradition, which describes how technical
architectures shape behavior and promote (or inhibit) innovation. Scholarship in
this tradition focuses primarily on the effects of different architectures, and on how
those architectures can be regulated. It has very little to say about legal
interpretation or programs’ meaning. CPU, Esq. will engage briefly with the
architecturalist tradition in Part III, because some kinds of rules are more
amenable to expression in software than others. The leading architecturalist
monographs are Lawrence Lessig, Code: And Other Laws of Cyberspace (Basic Books
1999), Yochai Benkler, The Wealth of Networks (Yale 2006), Jonathan Zittrain, The
Future of the Internet — And How to Stop It (Yale 2008), and Barbara van Schewick,
Internet Architecture and Innovation (MIT 2010). Lessig and Zittrain’s books are
crossovers written with popular audiences in mind; Benkler’s and van Schewick’s
are resolutely, austerely academic. CPU, Esq. will aim for a middle ground: my ideal
is to combine the analytic precision of Benkler and van Schewick with the
accessible prose of Lessig and Zittrain. Other books more loosely in this tradition
include Primavera de Filippi and Aaron Wright, Blockchain and the Law (Harvard
2018) and Woodrow Hartzog, Privacy’s Blueprint (Harvard 2018).

The other significant relevant body of books on law and computer science is
more recent. It explores the ways in which algorithmic decision-making —

12

DRAFT - June 17, 2020

especially based on machine learning over large datasets — can differ from human
decision-making and some of the unsettling legal issues that delegation to
algorithms can raise. Notable books here include Frank Pasquale’s The Black Box
Society (Harvard 2015), Cathy O’Neil, Weapons of Math Destruction (Crown 2016),
Virgina Eubanks, Automating Inequality (St. Martins 2018), and Safiya Umoja Noble,
Algorithms of Oppression (NYU 2018). Again, CPU, Esq. will engage with this literature
in Part III, but its concerns are different than mine. These books are about the
institutions that deploy and rely on software; CPU, Esq. takes a much closer look at
software itself.

A third body of law-and-computer-science scholarship is devoted to making
law computable: building working computer systems that can assist with legal
research or legal reasoning. The emphasis here is on the artificial intelligence,
natural language processing, and data science needed to create reasonable
software models of legal arguments or legal databases. Kevin D Ashley, Artificial
Intelligence and Legal Analytics (Cambridge 2017) is a thorough survey of the field,
and Michael A. Livermore & Daniel N. Rockmore, Law as Data: Computation, Text, and
the Future of Legal Analysis (SFI Press 2019) is a recent collection of cutting-edge
work. Part III will briefly engage with this line of work, but from a fairly abstracted
point of view: what is it that these systems are actually doing?

There are some interesting analyses — diverse enough that I hesitate to call
them a “line” or a “tradition” — of attempts to engage with the modeling problem:
what is the nature of the relationship between a digital representation of a thing
and the thing itself? The classic text here is Terry Winograd and Fernando Flores,
Understanding Computers and Cognition (Addison-Wesley 1987), which argued
strongly and persuasively for the existence of gaps between representation and
reality of the sort that I discuss in chapters 3–6 and especially 7. (The book also has
an overview of speech act theory, but applies it to user interactions rather than to
programs themselves.) Some more recent works that hit on similar themes are
Meredith Broussard, Artificial Unintelligence (MIT 2018), David Auerbach, Bitwise
(Pantheon 2018), and David Golumbia, The Cultural Logic of Computation (Harvard
2009). I plan to put them in conversation with the scholarship on digital
representations of primary legal materials, such as Peter M. Tiersma, Parchment,
Paper, Pixels (Chicago 2010) and George S. Grossman, Legal Research: Historical
Foundations of the Electronic Age (Oxford 1994).

The literature on the philosophy of language is of course immense, and so is
the literature on legal interpretation. Interest in the intersection of the two is more
recent. Books here include Brian G. Slocum, Ordinary Meaning (Chicago 2016),
Philosophical Foundations of Language in the Law (Andrei Marmor and Scott Soames

13

DRAFT - June 17, 2020

eds.) (Oxford 2011), Andrei Marmor, Interpretation and Legal Theory (Hart 2005),
Andrei Marmor, Social Conventions: From Language to Law (Princeton 2014), Timothy
Endicott, Vagueness in Law (Oxford 2001), Lawrence Solan, The Language of Judges
(Chicago 1993), Lawrence Solan, The Language of Statutes (Chicago 2010), and
portions of The Oxford Handbook of Language and Law (Lawrence M. Solan and Peter
M. Tiersma eds.) (Oxford 2012). Some of these shade over into linguistics and law;
none of them deal with programs or computers as interpreters. My discussion of
speech acts will draw on the classic texts of the field, including Kent Bach and
Robert M. Harnish, Linguistic Communication and Speech Acts (MIT 1982), John R.
Searle, Speech Acts: An Essay in the Philosophy of Language (Cambridge 1970), John R.
Searle, Expression and Meaning: Studies in the Theory of Speech Acts (Cambridge 1985),
J.L. Austin, How to Do Things with Words (Harvard, 2d ed. 1975), and Paul Grice,
Studies in the Way of Words (Harvard 1989). Computers, I think it is fair to say, were
not on their minds. Andrei Marmor, The Language of Law (Oxford 2014) is a recent
entry in the literature on speech acts and law and will be a starting point for some
of my analysis.

CPU, Esq. will cut through the philosophy of computer science at an unusual
angle. There is no way to avoid touching on the classic Big Issues, such as whether
computers can “think,” but the questions I am interested in tend to be less
explored. There are articles and book chapters on many of the questions I will
analyze — such as the distinction between software and hardware, and the nature of
specification — but few monographs deal with them in any detail. The closest would
be Timothy Colburn, Philosophy and Computer Science (Routledge 1999), Brian
Cantwell Smith, On the Origin of Objects (MIT 1996), Luciano Floridi, Philosophy and
Computing: An Introduction (Routledge 1999), and The Blackwell Guide to the Philosophy
of Computing and Information (Luciano Floridi ed.) (Blackwell 2004), but all of these
cover so much ground that they can devote only a few shorter segments to the
issues CPU, Esq. will cover. William Rapoport’s ongoing draft textbook on the
philosophy of computer science is an exception; its chapters on the nature of
computer programs are closely on point and include a useful bibliography.

One important exception is a book from sociology, Donald MacKenzie’s
Mechanizing Proof (MIT 2001), which gives a detailed historical survey of formal
methods and software verification. MacKenzie is exceptionally thorough and
careful in presenting various arguments about whether and how proofs and
programs correspond to the world, and in thinking through what a “proof” and a
“program” actually are. MacKenzie’s concerns are largely internal to computer
science and software engineering; I think a legal audience would benefit from

14

DRAFT - June 17, 2020

seeing these ideas translated into their terms of art and applied to their own
problems.

15

	CPU, Esq. How Lawyers and Coders Do Things with Words
	Brief Summary
	Summary
	Detailed Outline
	Part I: Foundations
	Chapter 1: Natural Language
	Chapter 2: Legal Language
	Chapter 3: Formal Languages
	Chapter 4: Programming Languages
	Chapter 5: Programmers
	Chapter 6: Hardware
	Chapter 7: Users
	Part II: Legal Doctrine
	Chapter 8: Code as Speech
	Chapter 9: Software Copyright
	Chapter 10: Software Patent
	Chapter 11: Unauthorized Access
	Chapter 12: Smart Contracts
	Part III: Legal Theory
	Chapter 13: Artificial Intelligence
	Chapter 14: Legal Interpretation
	Chapter 15: Programming Law
	Chapter 16. Legal Drafting
	Audience
	Manuscript
	Related Scholarship

